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In this issue, Fitzgerald et al. (2013) show that LIP neurons in monkeys encode categorically distinct
task conditions using a scalar code. Activity scales up or down to encode different categories, with neurons
maintaining proportional levels of activity in relation to one another.
One of the primary goals of cognitive

neuroscience is to effectively equate cog-

nitive and neural processes. To achieve

this, experimenters design behavioral

paradigms in which determining the

correct behavioral response is contingent

upon a specific cognitive operation of

interest. They then measure neural

activity (through a variety of techniques

in a variety of species) during task per-

formance and relate the information

encoded by that neural activity to the

cognitive processing required. In studies

of the neural correlates of cognition in

monkeys, this approach has been ap-

plied to neural activity in the posterior

parietal cortex with considerable suc-

cess. For example, physiological signals

in this area have been identified at

the single-neuron level that carry informa-

tion about decisions (Kiani and Shadlen,

2009), categories (Freedman and Assad,

2006; Goodwin et al., 2012; Swaminathan

and Freedman, 2012), rules (Stoet and

Snyder, 2004), numbers (Nieder and

Miller, 2004), relationships (Chafee et al.,

2007), and time (Leon and Shadlen,

2003).

The information reflected in this neural

activity is relatively abstract, provides

a logical basis for selecting the appro-

priate action in the task, and typically

does not correlate with the attributes

of the specific stimuli or movements

involved—all characteristics one might

expect of neural signals that support

cognitive processing. However, demon-

strating a correspondence between

neural and cognitive representations
necessarily involves making an inference

as to the nature of the cognitive process

taking place in the brain of a subject

based on the pattern of behavior that

one can observe. That inference is not

necessarily straightforward, insofar as

any single behavioral response could

be the product of a large number of

alternative cognitive operations. Further,

although we often assume humans and

monkeys share a core set of simple cogni-

tive abilities, the degree to which these

abilities differ between species is not

precisely known. Finally, it is often neces-

sary to first train monkeys to perform

cognitive tasks before studying the

neural correlates of cognitive processing

(although, see Qi et al., 2012). Training

can take many months, involves repeat-

edly rewarding successively more accu-

rate behavioral responses, is likely to

recruit reward-driven synaptic plasticity

in the cortex, and therefore is likely to

sculpt the computations performed by

the cortical neurons and networks that

are under study. It is not surprising then

that at the end of training, neural signals

are detected that reflect the cognitive

processing the task in question was de-

signed to recruit. However, it is not

possible, a priori, to predict, before neural

recording, which neural signals will

emerge, the nature of the neural represen-

tation that will enable successful perfor-

mance, the algorithm the brain will

discover during training, or even the

precise nature of the cognitive process

that ultimately will result. Neural recording

after training can help to answer all of
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these questions, and in some cases, the

answers are surprising.

In this issue of Neuron, Fitzgerald et al.

(2013) provide evidence that LIP neurons

encode categorically different task condi-

tions using a scalar neural code. In this

representation, firing rates of neurons

maintain a constant relation to one

another but scale together in parallel to

higher or lower levels to encode different

task conditions. This is surprising because

in prior studies, parietal cortex was found

to represent categorical task conditions

in cognitive tasks by selectively activating

largely distinct subpopulations of neurons

to encode each task condition, rather than

scaling activity in a single group of

neurons (Goodwin et al., 2012; Nieder

and Miller, 2004; Swaminathan and

Freedman, 2012). Fitzgerald et al. (2013)

were led to the conclusion that LIP em-

ployed a scalar code by their discovery

that the distribution of neurons in LIP

preferring each of several categories or

conditions in a task was strikingly biased.

Given a task with two or three outcomes,

they found that themajority of LIP neurons

were most active for the same outcome

and were similarly less active for the alter-

natives, leading to the idea that LIP

employed a scalar code to meet the cog-

nitive demands of the task. After elimi-

nating trivial accounts for this neuronal

bias based on themonkeys’ performance,

Fitzgerald et al. (2013) arrived at the insight

that the bias in population representation

was predicted by the prior finding that

network dynamics in area LIP were one-

dimensional (Ganguli et al., 2008).
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Ganguli and colleagues examined

neural activity in LIP during the delay

period of attention and perceptual deci-

sion tasks. They found that the firing rates

of LIP neurons exhibited the same relative

levels of activity with respect to one

another during the delay period that they

exhibited in their spontaneous activity,

during the intertrial interval (Ganguli

et al., 2008), suggesting that activity

scaled up or down to code task-critical

information. Representing the pattern of

activity in the network as a vector in

a rate space (with dimensions equal to

the number of neurons), a network em-

ploying one-dimensional dynamics would

represent information essentially by

lengthening or shortening the population

rate vector, rather than by changing its

direction (as the direction of the vector is

controlled by the distribution of firing rates

over neurons and not the global level of

activity). Fitzgerald et al. (2013) reasoned

that if LIP neurons utilized one-dimen-

sional dynamics and a scalar code to

differentiate between stimulus categories

and task conditions, then most neurons

would be maximally activated for the

same task condition, explaining the

observed population bias. By providing

strong evidence that population repre-

sentations in area LIP are biased and

neural dynamics are approximately one-

dimensional under a variety of task condi-

tions and cognitive demands, Fitzgerald

et al. (2013) strengthen the evidence that

this is a generalized characteristic of

how LIP neurons code information in

cognitive tasks.

In their report in this issue, Fitzgerald

et al. (2013) trained monkeys to perform

categorization, association, and percep-

tual decision tasks, and they recorded

neural activity in an area of posterior pari-

etal cortex (area LIP) known to play a role

in sensorimotor control (Snyder et al.,

1997), attention (Bisley and Goldberg,

2003; Gottlieb et al., 1998), and cognition

(Freedman and Assad, 2006; Kiani and

Shadlen, 2009). In the categorization

task, monkeys viewed a patch of dots

that moved in different directions and re-

ported whether each stimulus belonged

to one of two arbitrary motion categories

(up-left or down-right) by imposing a

diagonal category boundary based on

direction. In the paired-associate task,

monkeys learned to associate three pairs
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of visual objects and selected the object

that was paired with a sample stimulus

each trial. In the perceptual decision

experiment, monkeys decided whether

to saccade to a red or green target based

on the direction of a visual motion stim-

ulus. In each case, monkeys discrimi-

nated between task conditions based on

a nominal cognitive variable (whether

category, association, or decision) that

could take on a small number of different

values in the experiment. Many of us

would have predicted that after training

and during performance, each category

or outcome in the task would activate

comparable numbers of LIP neurons

with comparable strength, because each

was rewarded with comparable fre-

quency and played an equivalent role in

controlling behavior.

Instead, what these authors show is

that the category preferences of LIP

neurons were highly biased. Many more

neurons were found to be selectively acti-

vated to encode motion category A than

B, for example, in spite of their behavioral

equivalence. A similarly skewed and

biased population representation was

observed in the paired associate and

perceptual decision tasks. Most neurons

in LIP preferred the same stimulus pair

or direction of motion, with relatively few

neurons preferring the others. What these

data imply is that rather than encoding

these categorically different task condi-

tions as discrete cognitive representa-

tions, parietal neurons rank them, coding

categories, associations, and decisions

as points along a neural continuum, as

‘‘more’’ or ‘‘less.’’ That suggests that LIP

neurons collectively signal a scalar value,

with different ranges of global activity cor-

responding to the different task condi-

tions. For example, given a task with three

conditions (A, B, and C), LIP neurons

might produce 30 impulses per second

to represent condition A, 20 impulses

per second to encode condition B, and

ten impulses per second to represent

category C (hence the biased population

preference for condition A). The readout

of task condition would then be based

on the overall firing rate in the population,

rather than on the distribution of firing

rates over neurons within the population.

The fact that Fitzgerald et al. (2013) were

able to show that this bias in population

representation generalized across indi-
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vidual monkeys, experimental paradigms,

and even laboratories suggests that it

might reflect a computational principle

rather than a task-specific effect.

An alternative explanation for the bias in

the population representation of cate-

gories was that since visual stimuli in

different categories varied in their visual

features (for example direction of motion),

a population bias in the preferred direc-

tion of LIP neurons could account for the

bias in category preferences observed.

Population biases among neurons tuned

to direction of movement have been

shown in area M1, for example (Naselaris

et al., 2006). However, in the present

case, the bias in population representa-

tion was much stronger during the delay

period after the offset of visual stimuli

than during the time that the stimuli were

visible (a bias in visual motion processing

would predict the reverse). In addition,

and importantly, the bias in population

representation was a function of training

to perform the categorization task. The

authors found that the distribution of

preferred direction categories in area LIP

was not similarly biased in a monkey

viewing the same motion stimuli before it

had been trained to categorize those

stimuli. These observations provide

compelling evidence that the bias is

augmented in the delay period, is a conse-

quence of training, and therefore does not

reflect an intrinsic (pre-existing) asymme-

try in the population distribution of

preferred motion directions in area LIP.

That is, the population bias arises during

training to meet the cognitive processing

demands of the task, rather than reflect-

ing how LIP neurons intrinsically encode

the visual stimuli involved.

Fitzgerald et al. (2013) found that spon-

taneous and evoked activity levels were

correlated in single neurons, as did Gang-

uli and colleagues (Ganguli et al., 2008).

One might wonder whether these data

suggest that one-dimensional dynamics

emerge as a consequence of neurons

differing in their intrinsic excitability. Both

groups observed that one-dimensional

dynamics were less prevalent during

periods of visual input, and this argues

against that interpretation. If differences

in excitability accounted for one-dimen-

sional dynamics, these dynamics should

be particularly evident when the network

was excited by extrinsic input. It still
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seems possible that variability in the

baseline level of activity across neurons

could contribute to one-dimensional

dynamics and scalar coding, in which

case signals driven by extrinsic input

would be superimposed on an initial and

persistent difference in baseline firing

rate. However, the present data provide

convincing evidence that the population

representation of task conditions is

considerably biased, and one would not

necessarily predict this on the basis of

pre-existing differences in the baseline

firing rate of neurons.

A strict one-dimensional coding

scheme would predict that all neurons

would have the same preferred category

in categorization tasks or exhibit the

same ranking of response magnitude

over categorically distinct task condi-

tions. Certainly, in this study and others

(Chafee et al., 2007; Freedman and As-

sad, 2006; Goodwin et al., 2012; Nieder

and Miller, 2004), this is not the case.

Although there may be a bias for neurons

to prefer some over other categories at

the population level, this bias is not abso-

lute, with some neurons preferring the

more weakly represented category. This

suggests that the population vector would

change in direction as well as length

to encode different categories, and it

becomes a question of the degree to

which scaling of activity versus redistribu-

tion of activity within the population

carries information about cognitive vari-

ables. Fitzgerald et al. (2013) describe

population dynamics in area LIP as being

‘‘low-dimensional’’ rather than one-

dimensional in categorization tasks, and

it is important to note that the mechanism

of neural coding in LIP sits somewhere in
between a strict scalar code, utilizing

one-dimensional dynamics, and a more

traditional population code in which

different categories are at least partially

encoded by the redistribution of activity

over neurons. In addition, Fitzgerald

et al. (2013) are careful to note that one-

dimensional dynamics may emerge from

network constraints that do not derive

directly from the necessity to encode

categories or categorically distinct task

conditions. For example, to perform the

behavioral tasks they employed, cortical

networks had to sustain patterns of

activity in the absence of continuing sen-

sory input (to mediate working memory).

The required patterns of connectivity

between neurons could impose the pro-

portionality in firing rates observed. At

this point, therefore, the exact computa-

tional role of scalar coding in LIP and its

relation to behavior remains an open

question.

Still, the degree to which one-dimen-

sional dynamics pertain to the neural

representation of categories, as reflected

in the strong population biases observed,

is surprising. One would not necessarily

guess that the brain would scale activity

in the same group of neurons to represent

different categories, which are discrete

cognitive representations that differ in

kind rather than degree. Training mon-

keys to perform a cognitive paradigm

essentially guarantees that neural corre-

lates of the cognitive processing required

will be recovered after training. However,

as these results show, it is not possible

a priori to determine how the brain will

solve the cognitive problem that has

been set, or to determine the nature of

the computations that neurons will
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perform to mediate successful perfor-

mance. In some cases, the characteristics

of the underlying neural representation

are unanticipated.
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