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SUMMARY

Neurons in cortical sensory areas respond selec-
tively to sensory stimuli, and the preferred stimulus
typically varies among neurons so as to continuously
span the sensory space. However, some neurons
reflect sensory features that are learned or task
dependent. For example, neurons in the lateral intra-
parietal area (LIP) reflect learned associations
between visual stimuli. One might expect that
roughly even numbers of LIP neurons would prefer
each set of associated stimuli. However, in two asso-
ciative learning experiments and a perceptual deci-
sion experiment, we found striking asymmetries:
nearly all neurons recorded from an animal had
a similar order of preference among associated
stimuli. Behavioral factors could not account for
these neuronal biases. A recent computational study
proposed that population-firing patterns in parietal
cortex have one-dimensional dynamics on long
timescales, a possible consequence of recurrent
connections that could drive persistent activity.
One-dimensional dynamics would predict the biases
in selectivity that we observed.

INTRODUCTION

It has long been appreciated that sensory neurons in the brain

respond selectively along particular sensory dimensions. In the

case of visual cortex, neurons can be found that respond selec-

tively to orientation, direction, color, and depth (Hubel, 1988).

Typically, the preferred stimuli of selective neurons are distrib-

uted across a wide range of the stimulus space. For example,

neurons in primary visual cortex have preferred orientations

that fall throughout the full 180� range of orientations (Hubel

and Wiesel, 1962), direction-selective neurons in the middle

temporal area have nearly evenly distributed preferred directions

and speeds (DeAngelis and Uka, 2003), and neurons in areas

of V4 and inferotemporal cortex have a wide distribution of

preferred color (Conway and Tsao, 2009) or preferred visual

form (Hegdé and Van Essen, 2007; Lehky et al., 2011). These
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broad distributions of preferred features presumably provide

maximum sensitivity throughout the stimulus space (Purusho-

thaman and Bradley, 2005).

Neuronal selectivity for basic visual features is an intrinsic

property of many visual cortical neurons, but other forms of

neuronal selectivity emerge following learning or in response to

behavioral demands. For example, in monkeys trained to asso-

ciate or categorize visual stimuli, some neurons respond selec-

tively among the groups of associated stimuli. If a monkey is

trained that two visual stimuli are to be associated as a pair,

A, while two other stimuli are to be associated as another pair,

B, after training neurons tend to fire more for one stimulus

pair than the other. Such neurons are common in inferotempo-

ral (Naya et al., 1996; Sakai and Miyashita, 1991), perirhinal

(Naya et al., 2003), and prefrontal cortex (Freedman et al.,

2001; Rainer et al., 1999). Neuronal activity reflecting trained

associations is common during stimulus presentation and also

during memory-delay periods in behavioral tasks that have

a working memory requirement (Miller et al., 2002). We recently

described neurons in the lateral intraparietal area (LIP) that

likewise show selective activity reflecting learned associations

among visual stimuli, both during visual stimulation periods

and during memory-delay periods (Fitzgerald et al., 2011;

Freedman and Assad, 2006). Those experiments were designed

to strictly dissociate associative signals in LIP neurons from the

well-known spatial/oculomotor signals in LIP (Andersen and

Buneo, 2002; Goldberg et al., 2006).

An intriguing question concerns the distribution of neuronal

preferences that emerge when animals are trained to associate

stimuli together. In analogy to visual cortical areas that have

a broad range of preferred stimuli among neurons, one might

expect roughly equal numbers of neurons that prefer associated

group A or that prefer associated group B. But in associative

learning studies, animals only need to discriminate one discrete

group/category from another; thus it is not clear what to expect

about the distribution of preferred associated stimuli. The ques-

tion remains open, becausemost previous studies of associative

or categorical learning have emphasized the magnitude of the

associative effect rather than its sign, that is, which particular

group of associated stimuli is preferred (Freedman et al., 2001,

2002; Naya et al., 1996, 2001, 2003; Rainer et al., 1998; Roy

et al., 2010; Sakai and Miyashita, 1991; Yanike et al., 2004).

To address this question, we examined the distribution of

preferred groups or categories of visual stimuli in LIP neurons
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Figure 1. Direction-Categorization and

Shape-Pair Association Tasks

(A and B) Direction-categorization task. Monkeys

associated six directions into two categories.

(C and D) Shape-pair association task. Monkeys

associated six static shapes into three pairs.

Different pairings were used for the two monkeys.
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in two associative learning studies (Fitzgerald et al., 2011;

Freedman and Assad, 2006) and in a perceptual decision study

(Bennur and Gold, 2011). To our surprise, we found that the

distributions of preferred groups/categories were dramatically

biased within a neuronal population: nearly every LIP neuron

from a given animal had the same order of preference among

the associated stimuli. This was despite the fact that LIP

neurons show very little bias in visual selectivity in naive

animals that have not been trained in associative learning

tasks; for example, preferred directions are distributed widely

among direction-selective LIP neurons recorded in passively

fixating monkeys (Fanini and Assad, 2009). The striking asym-

metries in the associative learning and perceptual decision

tasks suggest that the dynamics of the parietal network come

to dominate the firing of individual LIP neurons in certain

regimes, driving the neurons toward a common pattern of firing.

In fact, biases in preferred groups or categories are predicted

from a recent recurrent network model for parietal cortex that

was developed to explain some peculiar commonalities in the

dynamics of persistent memory-period activity among individual

LIP neurons (Ganguli et al., 2008). These findings suggest that

understanding parietal network dynamics is at least as impor-

tant as understanding firing properties of individual parietal

neurons.
Neuron 77, 180–19
RESULTS

We analyzed data from three experi-

ments. In the first experiment, two

monkeys were trained to group either

six (Fitzgerald et al., 2011) or 12

(Freedman and Assad, 2006) directions

of moving stimuli into two 180�-wide

‘‘categories.’’ In the second experiment,

two animals were trained to group six

arbitrarily chosen shapes into three asso-

ciated pairs (Fitzgerald et al., 2011). In the

third experiment, monkeys reported the

direction (right or left) of noisy motion

stimuli (Bennur and Gold, 2011).

In the direction-categorization task,

trials began with the monkey fixating its

gaze and manually gripping a touch-

sensitive bar (Figures 1A and 1B). A patch

of coherently moving dots (the sample

stimulus) appeared in the receptive field

(RF) of the neuron under study, and then,

following a delay period, a second patch

of moving dots (the test stimulus) ap-

peared at the same location. If the two
directions belonged to the same category, the monkeys had to

release the touch bar; if the two directions belonged to opposite

categories, the animals had to maintain contact with the touch

bar. The shape-pair association task was identical in structure

to the direction-categorization task, except that the sample and

test stimuli were static shapes presented in the receptive field,

and the animal determined whether the two shapes presented

were from an associated pair (Figures 1C and 1D).

Both tasks were designed to dissociate associative/categor-

ical signals from spatial or motor-planning effects. The sample

and test stimuli were placed in the same position of the receptive

field for the neuron under study and subtended the same

maximal visual angle. The monkeys could also not predict the

upcoming required motor response during the sample-stimulus

presentation and delay period, because the test stimulus was

chosen at random. The monkeys were also never trained to

make eye movements within the task.

After the animals were trained (generally >85% correct trials,

averaged among sessions), we recorded from neurons in LIP. In

both tasks, neuronal activity reflected the learned associations

among stimuli. During the sample, delay, and test period, neurons

tended to fire with similar rates for associated stimuli and dissim-

ilar rates for nonassociated stimuli (Figures 2A–2C and 2E–2G;

neuronal firing traces sorted by the identity of the sample
1, January 9, 2013 ª2013 Elsevier Inc. 181



Figure 2. Single Neuron and Population

Activity

(A–C) Three single neurons recorded while

monkey H performed the direction-categorization

task. The six traces in each plot correspond to the

mean neuronal activity evoked by each of the six

directions, and the same colors indicate directions

that belong to the same category.

(D) Mean normalized activity recorded from the

population of 45 neurons. The normalized spon-

taneous activity is indicated by the black hori-

zontal line.

(E–G) Three single neurons recorded while

monkey H performed the shape-pair association

task. The six traces in each plot correspond to the

mean neuronal activity evoked by each of the six

sample shapes, and the same colors indicate

associated shapes.

(H) Mean normalized activity from the popula-

tion of 93 recorded neurons. The normalized

spontaneous activity is indicated by the black

horizontal line.
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stimulus). These associative neuronal signals were previously

described in detail (Fitzgerald et al., 2011; Freedman and Assad,

2006). However, it is important to reiterate that associative signals

were not due to systematicdifferences in the animals’ behavior for

different direction categories or shape pairs, such as differences

in the animals’ performance or in fixational or posttrial eye move-

ments (Fitzgerald et al., 2011; Freedman and Assad, 2006).

Biases in Preferred Direction Category or Associated
Shape Pair
Across the neuronal population, we expected to see approxi-

mately equal numbers of neurons that had higher firing rates for

one direction category or the other, or for one associated shape

pair or another. This would be in line with the typical broad distri-

bution of preferred stimulus features found among visual cortical

neurons. However, we were surprised to find that the preferred

associations were remarkably stereotyped across a given popu-

lation of neurons. Figures 2A–2C show three single neurons re-
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corded from monkey H during the direc-

tion-categorization task. The three

neurons varied in their amplitudes and

dynamics of firing, yet all three had higher

activity for the direction category up/left

than for the direction category down/right

(see Figure 1A for color key).

Figures 2E–2G show three single

neurons recorded from the samemonkey

during the shape-pair association task.

All three neurons had highest activity for

the diamond/Y pair, intermediate activity

for the star/vase pair, and lowest activity

for the plus/triangle pair (see Figure 1C,

left, for color key).

These particular patterns of selectivity

were preponderant for this animal.

Figures 2D and 2H show the normalized
population average of all neurons recorded from monkey H

(direction-categorization task: n = 45; shape-pair association

task: n = 93). The bias in selectivity emerges as a divergence

of the average activity among the different associated stimuli; if

the order of preference were instead randomly distributed

among neurons, the population-average responses should be

closely overlapping.

To examine the bias in more detail, for each neuron we rank-

ordered the visual stimuli by the magnitude of the average

evoked neuronal activity. We focused our analysis on those neu-

rons that had a statistically significant selectivity for the direction

categories or shape-pair associations (nested ANOVA; p < 0.01;

Fitzgerald et al., 2011). This selection criterion does not intro-

duce a bias in the pattern of selectivity, because selective neu-

rons could in principle prefer any of the possible groups.

Figure 3A shows the rank order of neural activity evoked

by each of the six directions of the direction-categorization

task, for each neuron from monkey H. Data from the sustained



Figure 3. Rank Ordering of Firing Rate

across Different Directions or Shapes

(A–H) Each column of small colored rectangles

corresponds to a set of firing rates recorded from

a single neuron. Each rectangle in a column repre-

sents a single stimulus (direction or shape, de-

pendingon theexperiment), color-codedaccording

to the corresponding direction category or associ-

ated shape pair of that stimulus. The stimulus that

evoked the highest activity is represented by the

rectangle at the top of the column, and the stimulus

that evoked the lowest activity is represented by

the rectangle at the bottom of the column. The re-

maining stimuli are arrayed within the column, rank

ordered by firing rate from top to bottom.

(A) The ranked activity for all direction-category

selective neurons in the six-direction-categoriza-

tion task recorded from monkey H during the

sustained sample (200–650 ms after motion onset)

and late delay (750–1,500 ms after motion offset).

For each neuron, the three red rectangles corre-

spond to the three directions in one direction

category, and the three blue rectangles corre-

spond to the three directions in the other category.

(B) The ranked activity for all direction category-

selective neurons in the six-direction-categoriza-

tion task recorded from monkey I during the

sustained sample and late delay.

(C) The ranked activity for all pair-selective neu-

rons recorded from monkey H in the shape-pair

association task during the sustained sample

(200–650 ms after shape onset) and late delay

(750–1,500 ms after shape offset).

(D) The ranked activity for all pair-selective neu-

rons recorded from monkey I in the shape-pair

association task during the sustained sample and

late delay.

(E) The ranked activity for all direction-category

selective neurons in the 12-direction-categoriza-

tion task with the 45–225� category boundary re-

corded from monkey H during the sustained

sample (200–650 ms after motion onset) and late

delay (500–1,000 ms after motion offset).

(F) The ranked activity for all category-selective

neurons in the 12-direction-categorization task

after monkey H with a 135–315� boundary, during
the sustained sample and late delay.

(G) The ranked activity for all category-selective neurons in the 12-direction-categorization task with the 45–225� category boundary recorded from monkey S

during the sustained sample and late delay.

(H) The ranked activity for all category-selective neurons in the 12-direction-categorization task with a 135–315� category boundary recorded from monkey S

during the sustained sample and late delay.

See also Figures S1 and S2.
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sample-stimulus response (200–650 ms following motion onset)

are presented in the left column, and data from the late delay

period (750–1,500 ms following motion offset) are presented in

the right column. During the sample period, across the neu-

ronal population there was a significant systematic asymmetry

between the neuronal activity for the two direction categories

(n = 31 neurons; p = 0.0025, Friedman’s test, null hypothesis of

equal activity for the two categories; see Experimental Proce-

dures for details). The bias was even more pronounced during

the delay period (n = 24 neurons; p < 10�14, Friedman’s test).

Monkey I had fewer numbers of neurons that showed statisti-

cally significant selectivity for the direction categories (nested
ANOVA; p < 0.01), but there was still a trend toward a bias in

the category preference during both the sample-stimulus period

(n = 15, p = 0.0081) and the delay period (n = 9, p = 0.016; Fried-

man’s test; Figure 3B).

Monkeys H and I also performed the shape-pair association

task, which allowed us to ask whether the selectivity is biased

when animals associate stimuli into three groups rather than

two. The neuronal population recorded during the shape-pair

association task in monkey H indeed showed a pronounced

bias in the ranking of strength of activity evoked by the different

associated shape pairs (Figure 3C). Both time periods showed

significantly biased preferences during the sample period
Neuron 77, 180–191, January 9, 2013 ª2013 Elsevier Inc. 183



Figure 4. Time Course of Category-Selective Activity

The normalized difference in neuronal activity between the categories for the

population of 45 neurons recorded from monkey H during the direction-

categorization task. Blue indicates higher activity when the up/left directions

were presented, black indicates no difference in activity between the two

categories, and red indicates higher activity when the down/right directions

were presented. Each neuron’s average activity across the three directions

within each category was calculated, then each neuron’s activity was nor-

malized by the maximum activity from the category averages. The normalized

down/right activity was subtracted from the normalized up/left activity, and the

difference was smoothed with a 50 ms Gaussian kernel.
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(n = 64, p < 10�11) and the delay period (n = 68, p� 0, Friedman’s

test). We did not observe a significant bias in shape-pair prefer-

ences for monkey I in either time period (Figure 3D), but monkey I

had weaker shape-pair association effects in general.

After seeing the bias in these data (Fitzgerald et al., 2011), we

reanalyzed a previous data set in which two monkeys performed

a 12-direction-categorization task (Freedman and Assad, 2006).

One of those animals was also monkey H. We confirmed that

monkey H had a consistent bias between direction categories,

and the bias was againmore pronounced during the delay period

than the sample period (Figure 3E; sample: n = 10, p < 10�3;

delay: n = 11, p < 10�15; Friedman’s test).

However, before those data were collected, monkey H was

trained on a direction-category boundary perpendicular to the

other category boundary. After the retraining, many LIP neurons

again were selective between the direction categories, but that

selectivity now reflected the new category boundary rather

than the old boundary (Freedman and Assad, 2006). We exam-

ined the pattern of selectivity for the population of neurons re-

corded frommonkey H for the first category boundary, and again

we found a strong bias in the ranking of directions (Figure 3F;

sample: n = 32, p < 10�10; delay: n = 20, p � 0; Friedman’s

test). Because the category boundaries were different (orthog-

onal) between the data in Figures 3E and 3F, the bias could

not be an intrinsic bias in direction preference that was coinci-

dently aligned with our category boundary. Rather, the bias

must have emerged as the animals learned to associate direc-

tions about a specific direction boundary. The retraining results

also argue that the bias was unlikely to have resulted from under-

sampling LIP during neuronal recordings (also see below).

A secondmonkey (monkey S) was also trained in the 12-direc-

tion-categorization task and then retrained with the perpendic-

ular direction-category boundary (Freedman and Assad, 2006).

Monkey S showed similar trends as monkey H: the bias in

preferred direction categorywas stronger during the delay period

than the sample period (Figure 3G; sample: n = 26, p = 0.64;

delay: n = 12, p < 10�5, Friedman’s test) and the bias was also

present after the animal was trainedwith the orthogonal category

boundary (Figure 3H; sample: n = 25, p < 10�3; delay: n = 10, p <

10�13, Friedman’s test). Interestingly, monkey S and monkey H

had opposite preferred categories for both boundary conditions.

The analyses corresponding to the data in Figure 3 focused

on those neurons that had statistically significant selectivity

for the direction categories or shape-pair associations (nested

ANOVA; p < 0.01; Fitzgerald et al., 2011). The percentage of

neurons that showed such specificity ranged from 45%–74%

(mean 58%) during the sustained visual period and 20%–71%

(mean 44%) during the late delay among all experiments.

However, the biases were also robust when all neurons were

included in the analyses (see Table S1 available online). In addi-

tion, for all of the experiments, across neurons there was no

obvious order of preference between associated stimuli within

a category or within an associated pair (data not shown).

Possible Explanations for the Bias
The bias in preferred associated stimuli could provide important

clues about the behavior of the parietal network during associa-

tive-learning tasks, but there are other potential explanations.
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One mundane possibility is that we undersampled LIP during

our recordings and thus missed other LIP neurons that had the

opposite selectivity. This is unlikely for several reasons. First, in

all of the associative learning experiments, we mapped the

recording chambers beyond the borders of LIP and recorded

from all grid positions (typically four to five) that allowed LIP

access. Second, we found a consistent bias in two separate

neuronal data sets from monkey H, in two different versions

of the direction-categorization task (Figures 3A and 3E). It is

unlikely that undersampling could have produced a consistent

bias. Third, the bias was not always constant over time during

the course of a trial. As described above, we consistently found

a stronger bias during the delay period than during the sample

period, even thoughmany neurons were selective for associated

groups during the sample period. This is shown as a continuous

function of time in Figure 4, for all neurons recorded frommonkey

H during the six-direction-categorization task. The color satura-

tion in Figure 4 indicates the difference in normalized neuronal

activity between the categories for each neuron throughout the

trial time. Black indicates no difference in the mean activity

throughout categories, blue indicates higher activity for the up/

left category directions, and red indicates higher activity for the

down/right directions, and the saturation of the color indicates

the magnitude of the normalized difference between the cate-

gories (see figure legend for more details). During the sample

period, neurons preferred either direction category, but the pref-

erence became more stereotyped during the delay period. If the

bias were due to undersampling LIP, we would expect to see

a consistent bias throughout the trial time.

Direction Selectivity in LIP Is Not Biased before
Direction-Categorization Training
Another possible explanation for the biases is that they reflect in-

trinsic biases in stimulus selectivity in LIP that happen to coincide

with the associated groupings that we taught the animals.



Figure 5. Passive Viewing of Motion Stimuli

(A) Before categorization training, monkey H passively viewed eight directions

of coherently moving dot stimuli (Fanini and Assad, 2009).

(B) For direction-selective neurons, the ranked activity evoked by each

direction is plotted during the sustained visual response (200–600 ms after

motion onset) as themonkey passively viewed the stimuli. Directions are color-

coded as in the motion-categorization task in Figure 1, where 6 indicates the

highest activity, and 1 indicates the lowest activity. The two directions that fell

along the category boundary were excluded.

(C) The ranked activity for direction-category selective neurons recorded from

monkey H following the categorization training, replicated from Figure 3A, right

panel.
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This seems extremely unlikely for the shape-association task,

because we paired the shapes arbitrarily. However, there could

have been an intrinsic bias in preferred directions in LIP that

existed before the categorization training. As described above,

this is unlikelybecausewe retrained twoanimalswithanewdirec-

tion-category boundary perpendicular to the original boundary,

yetwestill founda strongbias after the retraining (Figures3E–3H).

Notwithstanding, we were able to test directly for an intrinsic

direction bias in monkey H. Before monkey H was trained in

the direction-categorization task, he had fortuitously been a

subject of another study in which he passively viewed patches

of dots moving in one of eight different directions in the RF.

The animal had no behavioral requirement except to fixate (Fig-

ure 5A). The fixation task was used to assess the intrinsic direc-

tion selectivity of LIP neurons, and indeed �60% of LIP neurons

were direction selective (Fanini and Assad, 2009). However,

those preferred directions were widely distributed. To compare

to the direction-categorization study, we rank-ordered the neu-

ronal responses to each of the six directions for the 28 neurons

that had statistically significant direction selectivity in the fixation

task (one-way ANOVA, p < 0.01; Figure 5B).
The blue and red colors in Figure 5B indicate the correspond-

ing direction categories in the direction-categorization task,

although the monkey did not learn the direction-categorization

task until after the data in Figure 5B were obtained. The data

from the six-direction-categorization task for monkey H are

shown for comparison (Figure 5C). Before the direction-category

training (Figure 5B), there was no significant bias between the

two ‘‘pseudo-categories,’’ for either of the two perpendicular

category boundaries that we later used for that animal (p >

0.05 in both cases; Friedman’s test). These findings argue

against an intrinsic direction bias in LIP, and thus suggest that

the bias emerged—in the same animal—as a result of the asso-

ciative training.

The Bias Is Not Due to Systematic Behavioral Effects
We also tested whether the biases could have resulted from

systematic behavioral biases. For example, the animals may

have struggled more with one associated group or another,

or had a higher reward expectation for one group or another.

In addition, there could have been different patterns of

small fixational eye movements or posttrial saccades between

different associated groups. These behavioral factors could

potentially modulate neuronal firing in a way that mimicked

associative effects; moreover, because the animals’ behavior

would likely be consistent from neuron to neuron, behavioral

effects could potentially mimic the biases that we observed

in the neuronal activity. We used a regression-analysis frame-

work to quantitatively examine the influence of a number of

behavioral variables, including trial-performance accuracy,

eye position within the fixation window, microsaccadic eye

movements within the fixation window, and reaction time on

match trials. In short, the behavioral effects on firing rate

were generally small, and when we accounted for these

small behavioral effects, we still found clear biases in the

pattern of selectivity among neurons (see Tables S2–S5; Fig-

ures S1 and S2). The bias was also unlikely to have arisen

from disparities in the amount of training or the training strategy

between different direction categories or shape pairs. For

the two direction categories, the animals were equally exposed

to directions from each category from the first day of training.

In the shape-pair task, some pairs were introduced sequen-

tially; however, no two pairs were introduced more than

15 days apart, and the animals were trained an additional

4–5 months after all three pairs were introduced (also see

Experimental Procedures).

Neuronal Selectivity in a Perceptual Decision Task Is
Also Biased
We found selectivity biases in associative learning experiments,

but could selectivity biases be a more widespread phenom-

enon? Numerous studies have examined the activity of LIP

neurons during perceptual decision tasks in which monkeys

report the direction of noisy motion stimuli (Gold and Shadlen,

2007). The stimuli are usually patches of randomly arrayed

dots, with a variable percentage of the dots moving coherently

in one of two opposite directions. The monkey must report the

perceived direction on each trial (two-alternative forced choice).

Because the decision in these experiments is of a discrete,
Neuron 77, 180–191, January 9, 2013 ª2013 Elsevier Inc. 185



Figure 6. Bias in Preferred Direction and

Color in a Perceptual Decision Task

(A) Behavioral task.

(B and C) The ranking of preferred directions and

coherences for the direction-selective neurons

recorded from monkey Av (B) and monkey At

(C) during the dots presentation (left panels,

200–800 ms after dots onset) and delay before

the target color change (right panels, 1–300 ms

after dots offset). Responses to rightward

99.9%-coherence moving dots are in dark blue,

25.6%-coherence dots are in light blue, leftward

25.6%-coherence dots are in tan, and leftward

99.9%-coherence dots are in light yellow.

(D) The ranking of preferred color following the

target-color change (100–300 ms after target color

change) for color-selective neurons recorded in

monkey At.
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categorical nature, it is possible that perceptual decision tasks

might reveal similar neuronal biases.

We analyzed data from one particular perceptual decision

experiment (Bennur and Gold, 2011). In the task, monkeys

made a saccade to a red target if they perceived rightward

motion and to a green target if they perceived leftward motion

(Figure 6A). The two targets were placed above and below the

patch of dots, with one of the targets placed in the RF of the

neuron under study. In one variant of the task, the saccade

targets did not turn red or green until after the motion stimulus

was turned off. Because the positions of the red and green target

were randomly interchanged from trial to trial, the animal could

not predict the direction of the upcoming saccade during the

moving-dot period or the delay period. This allowed the authors

to assess the neuronal selectivity for the direction of the moving

dots independently of the direction of the upcoming saccade.

Moreover, because both red and green saccade targets could

appear in the RF, the authors could also assess neuronal selec-

tivity to target color independently of the direction of the up-

coming saccade.

Indeed, many of the LIP neurons were selective for the direc-

tion of the moving-dot stimulus or the color of the saccade

target, independently of the saccade direction (ANOVA, p <

0.01; Bennur and Gold, 2011). Moreover, similar to the associa-

tive learning experiments, the preferred directions and colors

were highly stereotyped among neurons. Figures 6B and 6C

show the rank order for the subsets of direction-selective

neurons (ANOVA, p < 0.01) during the moving-dot period and

during the delay period. For both monkeys and in both time

periods, the neurons tended to have higher activity for rightward

motion (blue hues) than leftward motion (yellow hues). Monkey

Av (Figure 6B) had only six neurons that were direction selective

during both time periods, yet there was still a trend toward a bias

in selectivity among those neurons (moving-dot period: p =

0.011; delay period: p = 0.027; Friedman’s test). Monkey At (Fig-
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ure 6C) had more direction-selective

neurons and showed significant biases

in both time periods (moving-dot period:

p < 10�6; delay period: p < 10�5; Fried-
man’s test). Similar results were obtained if all of the neurons

were included in the analyses, not only the direction-selective

neurons (see Table S1).

There was also a bias in the selectivity for the color of the

saccade target in the RF. Monkey Av (data not shown) only

had five color-selective neurons (and thus lacked statistical

power), but if all 25 neuronswere included, therewas a significant

bias toward larger responses for the red target (p = 0.0093;

Friedman’s test). Monkey At (Figure 6D) had 24 color-selective

neurons, and all 24 had higher activity for the red target (p <

10�6; Friedman’s test). One caveat is that both monkeys had

been previously trained on a different perceptual decision task

in which only red saccade targets were placed left and right

of the fixation point (Connolly et al., 2009). This previous train-

ing history could have made the red targets more salient to

the animals, perhaps causing consistently larger neuronal re-

sponses than the green targets. In the new experiment, however,

the animals did not show a systematic bias in their choices of the

red or green saccade targets (Bennur andGold, 2011), so there is

no direct evidence that the animals placed special significance

on the red target. In the case of the direction selectivity, the

animals were exposed equally to left and right directions from

the start of training, so the direction selectivity could not have re-

sulted from overtraining in one direction.

Biased Preferences Are a Prediction of One-
Dimensional Dynamics in LIP
We found biased neuronal representations in two associative

learning experiments and a perceptual decision experiment—

but what is the significance of the bias? A recent modeling study

could provide insight. Ganguli and colleagues (2008) developed

a computational model to examine the dynamics of the parietal

neural network. Themodel wasmotivated by a surprising stereo-

typed relationship observed between the amplitude of memory-

delay activity and the dynamics of visual transients in individual
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LIP neurons (Bisley and Goldberg, 2003, 2006). Ganguli et al.

(2008) argued that this stereotyped neuronal behavior was

unlikely to result from finely tuned intrinsic properties of LIP

neurons, but rather reflects the dynamics of the interconnected

neural network that includes those neurons.

To explain the neuronal data, Ganguli et al. (2008) proposed

a dynamical neural network model in which slowly varying

patterns of neural activity, such as spontaneous activity or

memory-delay activity, are ‘‘one-dimensional’’ on long time-

scales. That is, if one considers the instantaneous firing of all

neurons in the network as a vector, that vector is confined to

a one-dimensional trajectory through n-dimensional firing-rate

space (n = number of neurons in the network) as neural activity

slowly decays back to spontaneous rates. The authors further

demonstrated that one-dimensional dynamics are a robust

consequence of networks with sparse, random, net-excitatory

connectivity between neurons.

A strong assumption of the model is that the one-dimensional

trajectory is linear, and thus that the vectors of population firing

rates during periods of spontaneous firing or sustained delay-

period firing are scaled versions of one another. Indeed, for

multiple LIP studies, Ganguli et al. (2008) were able to show

that, across the neuronal population, there was a linear rela-

tionship between the amplitudes of spontaneous activity and

memory-delay activity (or other slowly changing activity).

We realized that the Ganguli model also makes a prediction

about neuronal selectivity in our experiments. If the population

firing rates (vectors) are scaled versions of one another, the order

of preference among the associated stimuli should be the same

for every neuron. Consider our direction-categorization task: if

for one neuron the activity is twice the spontaneous rate in

response to the up/left category and three times the sponta-

neous rate in response to the down/right category, the same

activity ratios should be found for all neurons. That is, the order

of preference between the categories should be the same for

all neurons. If not, the vector of population firing rates would

not scale linearly under different conditions. Thus, the Ganguli

model provides a potential explanation for the biases in selec-

tivity that we observed.

To test the applicability of the model to our data, we examined

whether there was a linear relationship between the firing rates

under different conditions and the spontaneous condition,

across the neuronal population. For every neuron from monkey

H in the six-direction-categorization task, we averaged the

delay-period activity across the three directions in each category

and plotted the average activity from the two direction cate-

gories against each other (r = 0.70, p < 10�12; Figure 7A) and

against the spontaneous activity (50–450 ms after fixation)

(Figures 7B and 7C). In all cases, the data were well fit by a linear

relationship (up/left category: r = 0.73, p < 10�12; down/right

category: r = 0.62, p < 10�9). We observed similar linear relation-

ships in the other associative experiments (Tables S6–S16).

Ganguli et al. (2008) also argued that rapidly changing visual

transients are not confined to a single dimension in population

firing-rate space, but instead enter higher-order modes that

then rapidly decay back to the single firing-rate mode as the

firing rate stabilizes. We thus plotted the amplitude of the visual

transient evoked by the onset of motion in the RF (40–140 ms
after motion onset) against the spontaneous activity (Figures

7D and 7E). Indeed, those plots were less well fit by a linear rela-

tionship (up/left category: r = 0.099, p = 0.036; down/right cate-

gory: r = 0.098, p = 0.036). These data also argue that the mutual

scaling of delay and spontaneous activity (Figures 7B and 7C)

was not due to simple differences in excitability among LIP

neurons: if the scaling were due to excitability differences, we

would have also expected a linear relationship with the transient

visual response (Ganguli et al., 2008). It is possible that the lack

of a linear relationship in Figures 7D and 7E was due to our

inability to accurately measure the amplitude of the visual tran-

sients, either because of the small time window needed to

measure the visual transient or inherent variability in the transient

amplitude. However, when we plotted the amplitude of the visual

transient for the two direction categories against each other

(Figure 7F), we found that the transients were nearly identical

in the two cases (linear regression: r = 0.99, p � 0), arguing

that we accurately estimated the amplitudes of the transients–

and underscoring the lack of category selectivity during this early

time interval.

The delay activity is often greater than the spontaneous

activity, or it may fall below the spontaneous activity (Figure 7C),

but a caveat of this analysis is that the delay activity is frequently

not much larger than the level of the spontaneous activity. If

the spontaneous activity comprises a large ‘‘component’’ of

the delay activity then a linear relationship would be expected

between the two measures. The relatively modest delay activity

limits the statistical power to determine exactly how the sponta-

neous and delay activities are related, e.g., by multiplicative or

additive scaling. However, a linear relationship between delay

activity and spontaneous activity is not a strong prediction

of the model. Rather, as long as the population relationship

between the spontaneous and delay activity is stereotyped

among conditions and monotonic, there should be a biased

selectivity among neurons, as we found (S. Ganguli, personal

communication).

DISCUSSION

We found biases in neuronal selectivity in LIP in three different

experiments, in five monkeys from two laboratories. The biases

were very strong in some cases, and we found no evidence

that the biases were due to experimental undersampling, in-

trinsic selectivity in LIP, or behavioral artifacts.

The biased distributions that we observed in LIP are markedly

different from the broad or uniform distributions of preferred

visual features typical among visual cortical neurons. There

have been some reports of overrepresentations in particular

visual features in visual cortex, such as horizontal and vertical

orientations in V1 (Pettigrew et al., 1968), centrifugal motion

directions (Albright, 1989) and near disparities in the middle

temporal area (DeAngelis and Uka, 2003), and expanding optic

flow stimuli in the medial superior temporal area (Duffy and

Wurtz, 1995). However, those biases are subtle compared to

the biases we found in LIP. The overrepresentations in visual

cortex were present in untrained animals, whereas the biases

we observed in LIP were clearly the result of the animals’ training

in the particular behavioral task.
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Figure 7. Relationship between the Sponta-

neous Activity and the Activity during the

Direction-Categorization Task

(A) The averaged late delay activity (750–1,500 ms

after motion offset) of the two categories recorded

from monkey H during the six-direction-categori-

zation task are plotted against each other. Linear

regression: r = 0.70, p < 10�12. The gray line has

a slope of 1.

(B and C) The activity during the late delay versus

the spontaneous activity recorded during the

fixation period (50–450 ms after fixation). Each

point represents the mean activity of an individual

neuron during the presentation of one direction

category. Linear regressions are fitted separately

for each category: up/left category (B, blue points),

r = 0.73, p < 10�12; down/right category (C, red

points), r = 0.62, p < 10�9.

(D and E) The activity during the early visual tran-

sient (40–140 ms after motion onset) versus

spontaneous activity, plotted in the same con-

vention as above. Linear regressions are fitted

separately for each category: up/left category

(D, blue points), r = 0.099, p = 0.036; down/right

category (E, red points), r = 0.098, p = 0.036.

(F) The averaged early visual transients (40–

140 ms after motion onset) of the two categories

plotted against each other. Linear regression:

r = 0.99, p � 0. The gray line has a slope of 1.
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But what is the significance of the biased representations in

LIP? We can consider a number of clues. First, the bias was

present in associative learning tasks and in a perceptual decision

task. These paradigms are inherently similar, because the

animals classify stimuli into two or three mutually exclusive cate-

gories—‘‘left’’ versus ‘‘right,’’ ‘‘shape-pair one’’ versus ‘‘shape-

pair three,’’ ‘‘direction-category one’’ versus ‘‘direction-category

two’’ (Freedman and Assad, 2011). Thus, the bias in LIP may

arise whenever animals decide between discrete alternatives.

Discrete alternatives bring to mind nonlinear dynamical net-

works with discrete attractor states. Multiple-attractor networks

have been used to model the activity of inferotemporal cortex

during pair-association tasks (Mongillo et al., 2003). Wong and

Wang (2006) also used recurrent neural network models that

generate stable, self-sustaining population-activity states to

simulate neuronal responses to a two-direction perceptual deci-

sion task in LIP (Roitman and Shadlen, 2002). Different stable

attractors corresponded to the different decision states and the

spontaneous state, a two- or three-dimensional description.
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Ganguli and colleagues (2008) examined

the same perceptual decision study and

argued that thedecisionpoolsweredomi-

nated by a single dimension. On the other

hand, attractor and one-dimensional

descriptors of LIP are not mutually exclu-

sive; multiple attractors may exist while

a single dimension’s activity dominates

(Wang, 2008), and the one-dimensional

state during the delay period resembles

a leaky attractor (Ganguli et al., 2008).
The biased selectivity and the linear relationship between

sustained activities (e.g., between delay activity and sponta-

neous activity) that we found in LIP are consistent with a single,

dominant dimension in LIP, but there are several caveats to

this interpretation. First, if the biased selectivity and linear rela-

tionship between sustained activities are manifestations of

the same underlying process, the strength of the two effects

should covary across animals or data sets. We could not mean-

ingfully address this issue with the few data sets in this paper

(no more than three per experiment), but it bears future study.

Second, the strength of the bias varied among animals, as did

the sign (e.g., the direction bias was reversed between monkeys

H and S; Figures 3E–3H). This might suggest that the bias

arises stochastically among animals or reflects the specific

strategy that an animal uses to solve the task. Finally, the bias

was usually not absolute in any experiment, and the sustained

activities were not perfectly correlated across neurons for a given

data set. Although some variation would be expected from

physiological noise, at this point a more conservative descriptor
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of the dynamics might be ‘‘low-dimensional’’ rather than one-

dimensional.

However, saying that the biased selectivity in LIP could arise

due to low-dimensional neural network dynamics hardly pro-

vides a satisfying answer to the question of why the selectivity

is biased (at least to most neuroscientists). One possibility is

that the bias is simply an epiphenomenon of a different func-

tion of the parietal network. For example, many LIP neurons

have activity that can be sustained for several seconds in the

absence of visual stimulation. This sustained activity has been

argued to play a role in oculomotor planning (Andersen and

Buneo, 2002), spatial attention (Goldberg et al., 2006), and other

forms of nonspatial working memory (Fitzgerald et al., 2011;

Freedman and Assad, 2006; Sereno and Amador, 2006). Sus-

tained activity on a timescale of seconds needs to be self-gener-

ated at the level of the neural network, and recurrent, excitatory

connections are usually invoked to this end. Thus, one possibility

is that the biased selectivity in LIP is an epiphenomenon of

a recurrent network architecture that is optimized to support

stable, sustained activity in the absence of visual input. If so,

the bias should minimally be considered as an additional con-

straint in modeling recurrent networks of this sort.

On the other hand, biased representations may play a useful

functional role. At first glance, the bias in LIP seems disadvanta-

geous, in that the (overwhelming) redundancy would limit the

coding power or bandwidth of the neural network. In contrast,

neurons in lower visual cortical areas are typically varied in their

selectivity, which reduces redundancy and thus increases de-

coding power. But a functional role of visual cortical areas is

presumably to encode along continuous stimulus dimensions,

such as orientation, direction, depth, and color. Discriminating

fine differences in these features requires a high-bandwidth

system, which could be accomplished by having neurons with

different selectivity.

This is not the case for the associative learning and perceptual

decision tasks that we examined. These tasks have only a small

number of discrete outcomes and thus do not need to be en-

coded by a high-bandwidth system. For example, the direc-

tion-categorization task had only two categorical outcomes,

which in principle could be encoded by one bit—high or low.

This is essentially what we find in LIP during these tasks. In

this view, it is possible that downstream brain areas read out

the overall level of activity among LIP neurons in determining

the particular discrete outcome; high input would indicate

one category and low input would indicate the other category.

This could have the potential advantage of reducing noise by

increased averaging. It could also reduce or obviate the need

for precise patterns of connections or labeled lines from LIP: if

LIP only provides a scalar output, the identity of the particular

inputs from LIP would be unimportant. In contrast, if there

were equal numbers of LIP neurons that preferred either of the

two categories, downstream areas must have a way to segre-

gate or otherwise identify those inputs.

The idea of a potential scalar readout from LIP raises a number

of interesting issues. First, a scalar readout only works well for a

few discrete behavioral outcomes; for more than a few out-

comes, a scalar readout could quickly run out of bandwidth.

That is, firing rate can only be split into so many levels before
noise starts to obscure differences between levels. We only

examined taskswith two or three discrete outcomes, but it would

be interesting to seewhether the selectivity biases remain if more

outcomes or categories are included. A related issue is that,

because our behavioral tasks involved only a few outcomes,

the animals could have adopted a simplified mnemonic or deci-

sional strategy, such as ‘‘A’’ or ‘‘not A.’’ One could imagine that

such a simplified strategy could produce a biased selectivity

among neurons. However, there is no a priori reason why the

delay activity and the spontaneous activity should fall along

a linear or low-dimensional trajectory in multidimensional firing-

rate space. That is, low dimensionality implies biased selectivity,

but biased selectivity does not guarantee low dimensionality. In

the case of the three shape pairs, it is even less likely that three

delay conditions and spontaneous activity would share a low-

dimensional trajectory.

A second interesting issue is the extent of the neural net-

work that contributes to the biased representations. For

example, we only recorded from one hemisphere in all of the

studies reported here, but an open question is whether both

hemispheres share the same bias. In addition, we focused on

parietal cortex in this study, but other brain areas may also

play a role. LIP is connected with the dorsolateral prefrontal

cortex, frontal eye fields, and superior colliculus (Blatt et al.,

1990; Lewis and Van Essen, 2000), all of which contain neu-

rons with persistent activity during memory-delay periods, in

which we found the strongest bias. In fact, there have been

a number of associative learning or categorization studies in

frontal cortex, although these have generally not focused on

the distribution of selectivity among neurons. However, a few

studies commented that the selectivity distributions were not

biased. For example, roughly equal numbers of neurons in the

frontal eye fields prefer slower speeds or faster speeds when

animals are trained to categorize speed (Ferrera et al., 2009).

In addition, when animals are trained to switch between two

categorization schemes, the preferred categories of individual

neurons in dorsolateral prefrontal cortex were evenly distributed

for both categorization schemes (Cromer et al., 2010). However,

these studies combined the data from the two monkeys, so

we cannot rule out that the individual monkey data were biased

in opposite directions. Intriguingly, in a recent study in prefrontal

cortex examining categorical representations in a stimulus-

detection task, ‘‘stimulus present’’ neurons outnumbered ‘‘stim-

ulus absent’’ neurons by nearly 4:1 (Merten and Nieder, 2012),

a strong categorical asymmetry that is reminiscent of the biases

we found in parietal cortex. This leaves open the possibility that

biased categorical representations also extend to prefrontal

cortex.

Finally, the biased representations were a consequence of

training (or retraining) the animals, and therefore exhibit some

kind of flexibility. For example, in one animal we found that the

biased representation of direction emerged from an unbiased

representation when the animal was trained in the direction-

categorization task. In all of the studies, we trained the animals

over a period of at least a few weeks, so we cannot address

how quickly a biased representation can emerge from an unbi-

ased representation. It is even possible that biases are estab-

lished online, depending on behavioral demands.
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Flexible representations have been described previously in

LIP, at least in regard to responses of single neurons. For

example, LIP neurons have color-selective responses when

color is made behaviorally relevant (Toth and Assad, 2002).

If the biased selectivity in LIP represents a simplified coding

strategy that emerges in response to certain behavioral condi-

tions (as opposed to an epiphenomenon of some other network

constraint), this implies flexibility at the level of the general pop-

ulation-coding strategy in parietal cortex, not just at the level of

single neurons.

EXPERIMENTAL PROCEDURES

Behavioral Tasks

The five behavioral tasks are described in detail in the published papers Fitz-

gerald et al. (2011), Freedman and Assad (2006), Fanini and Assad (2009), and

Bennur and Gold (2011) but are summarized below for convenience. All exper-

imental procedures were in accordance with the NIH Guide for the Care and

Use of Laboratory Animals and Harvard Medical School or University of Penn-

sylvania Institutional Animal Care and Use Committee.

Direction-Categorization Task

Animals started the task by fixating their gaze at a center point and holding

a touch circuit. A patch of 100% coherently moving dots appeared in the RF

of the neuron under study for 650 ms, and following a 1,000 ms (12-direction

task) or 1,500 ms delay (six-direction task), a second dot patch was presented

in the RF for 650 ms. In half of the trials, the directions of the two dot patches

belonged to the same category, and the animal released the touch circuit for

a juice reward. In the other half of the trials, the direction of the second dot

patch belonged to a different category, and the animal had to maintain his

hold on the touch circuit during a 150 ms delay until a motion patch moving

in the same category was presented for 650ms, when the animal could release

the touch circuit to receive juice.

Animals were trained with equal exposure to the two direction categories.

The direction-categorization training started with only the two directions

orthogonal to the category boundary—one direction in each category. Addi-

tional directions off the orthogonal were added to each category simulta-

neously as training progressed.

Shape-Pair Association Task

The trial structure was the same as the direction-categorization task, and the

delay period was 1,500 ms. The animals were initially trained on two shape

pairs, and additional pairs were introduced sequentially or in groups of two.

No more than 15 days of training separated the introduction of the first and

last shape pairs, and the animals were trained on the shape task for a further

4–5months after all shape pairs were introduced. Additionally, the animals saw

the shapes with equal frequency during the 4–6 months of recording and

further training.

Motion-Viewing Task

After the monkeys fixated, a patch of static dots (adjusted to fill the neuron’s

RF) was presented in the RF for 200–400 ms. The dots then moved coherently

for 600 ms in one of eight equally spaced directions, followed by an interstim-

ulus interval of 400 ms. After three such motion pulses, the monkey was re-

warded for maintaining fixation. Each trial was separated by 1,000 ms.

Perceptual Decision Task

Animals started the task by fixating their gaze on a central point, and after

a short delay, two blue neutral targets appeared above and below the fixation

point. Neurons were selected so that one of the targets fell within the RF. A

patch of moving dots (5�) appeared at the center of the display. The dots

moved left or right for 800 ms with three possible coherences: 99.9%,

25.6%, or 6.4%. After the offset of the moving dots (300 ms), the blue targets

changed color to red and green, indicating where the monkeys should look to

signal their decision about the direction of motion. After another 400 ms, the
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fixation point turned off, cuing the animal to make a saccade to one of the

two targets. Animals were trained with equal exposure time to left and right

motion.

In this paper, we focused on the 99.9% and 25.6% coherences. We did not

consider the 6.4% coherence case, because the animals judged the motion

directions near chance for 6.4%.

Data Analysis

All analyses were performed on correct trials in which the animals maintained

fixation throughout the trial. Single neuron plots were smoothed with a 120 ms

Gaussian kernel. Population plots show averaged, normalized activity. For

each neuron, the mean activity for each condition was smoothed with a

50 ms Gaussian kernel, and the response of each cell was divided by its

maximum activity across all of the conditions.

We tested for significant encoding of motion-direction categories and

shape-pair associations using a nested ANOVA (criterion of p < 0.01) in which

the shape-pair or direction categories were the main variables, and the two

shapes within each pair or three or six directions within each category were

the nominal variables. This nested design tests whether a neuron’s responses

to all shapes or directions within a pair or category are distinct from the other

shapes or directions. That is, the nested approach generally excludes neurons

that responded selectivity to only one shape within a pair or one direction

within a motion category.

For the perceptual decision data (Bennur and Gold, 2011), we tested for

significant direction or color selectivity using one-way ANOVA with a criterion

of p < 0.01.

We tested for a significant population-level bias in the activity for each direc-

tion category, shape-pair association, direction decision, or color using

a Friedman’s test, a nonparametric test for a difference in the neuronal activity

by group, with a null hypothesis that the population-level activity is the same

for all groupings. The random variable is each neuron’smean activity by condi-

tion. For example, in the 12-direction-categorization task, the input is all of the

neurons’ mean activity for each of the 12 directions, which is labeled as six

observations for category A and six observations for category B per neuron.

The Friedman’s test adjusts for individual neuron firing rate differences by

rank ordering each neuron’s responses to the association/decision stimuli

and then testing for a significant difference in association/decision group rank-

ings across the population. All analyses were performed using custom soft-

ware and the statistics package in MATLAB releases 2007a and 2012a (The

MathWorks, Natick, MA).
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